
Real-Time Task Scheduling for Energy-Aware Embedded Systems1

Vishnu Swaminathan and Krishnendu Chakrabarty
Dept. of Electrical & Computer Engineering

Duke University
Durham, NC 27708

fvishnus,krishg@ee.duke.edu

ABSTRACT
We present a new approach for scheduling workloads

containing periodic tasks in real-time systems. The pro-
posed approach minimizes the total energy consumed by the
task set and guarantees that the deadline for every periodic
task is met. As embedded software becomes a larger compo-
nent of system-on-a-chip design, energy management using
the operating system becomes increasingly important. We
present a mixed-integer linear programming model for the
NP-complete scheduling problem and solve it for moderate-
sized problem instances using a public-domain solver. For
larger task sets, we present a novel low-energy earliest-
deadline-first (LEDF) scheduling algorithm and apply it to
two real-life task sets.

1 Introduction

A number of energy-constrained embedded and mobile
systems are designed for real-time use. These systems must
be designed to meet both functional and timing require-
ments [2]. Thus, the correct behavior of these systems de-
pends not only on the accuracy of computations but also on
their timeliness. While energy minimization for embedded
and mobile computing is of great importance, energy con-
sumption must be carefully balanced against the need for
real-time responsiveness.

One approach to conserve energy is to employ low-
power design methodologies. These methods, however, are
limited in that they can be used only in systems with a fixed
supply voltage. Most modern computers are equipped with
a voltage supply that is capable of providing at least two
different voltages to the system, and the above methods are
comparatively less effective than ones that are tailored to
make use of this feature.

In embedded systems with variable-speed processors,
the operating system (OS) can reduce energy consumption
by scheduling tasks appropriately. Energy minimization by
adjusting CPU speed was first studied in [12]. For real-
time systems, optimal preemptive off-line scheduling algo-

1This research was supported in part by DARPA under grant no.
N66001-001-8946, and in part by a graduate fellowship from the North
Carolina Networking Initiative.

rithms have also been provided [13]. Hong et al. presented a
heuristic for the preemptive model with a limit on the num-
ber of speed changes [4]. Although the scheduling meth-
ods cited above are very efficient, most of them make the
assumption that the CPU can operate at several different
voltage levels (and hence different clock frequencies) which
can be varied continuously. In addition, a number of these
methods are aimed at the synthesis of low-power designs
and they do not address energy minimization during field
operation.

In this paper, we present an on-line scheduling algorithm
for real-time systems that attempts to minimize the energy
consumed by a periodic task set. This is based on the well-
known earliest-deadline-first (EDF) algorithm [8]. We con-
sider a practical scenario where a single CPU executes a set
of periodic non-preemptable tasks. The voltage, and conse-
quently the clock speed, of the CPU may be switched be-
tween two or more values dynamically at run-time through
OS system calls. This option is available in most modern
computers, which provide at least two different operating
speeds [5]. We attempt to find the voltage at which each
task must be executed such that the energy consumed by
the entire set of periodic tasks is minimized and generate a
schedule for the task set such that the release time require-
ments are satisfied and the deadlines for every task is met.

2 Preliminaries

In this section, we present our notation and the under-
lying assumptions. We are given a set of n periodic tasks
R = fr1; r2; : : : ; rng. Associated with each task ri 2 R

are (i) its release (or arrival) time ai, (ii) its deadline di,
(iii) its length li (represented in number of instruction cy-
cles), and (iv) its period pi. Each task is released at time
t = ai. In other words, each task can begin execution only
at or after time t = ai. Release times are arbitrary in that a
task may be released at any time before its deadline. We as-
sume, without loss of generality, that all tasks have identical
periods. If the periods of tasks are different, we can perform
a polynomial transformation to this scenario through the ap-
plication of the LCM theorem [7]. In such a case, there may
be a need to execute a given task several times within the

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Real-Time Task Scheduling for Energy-Aware Embedded Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

“hyperperiod”. All tasks must complete execution before
their deadlines.

We assume that the CPU can operate at one of two volt-
ages: V1 or V2. Depending on the voltage level, the CPU
speed may take on two values: s1 or s2.The model can be
easily extended to handle more than two voltages (speeds).
The supply voltage to the CPU is under OS control and
the OS may dynamically switch the voltage during run-
time with relatively low overhead. We restrict ourselves
to two speeds out of practical considerations. CPU speeds
are specified in terms of the number of instructions exe-
cuted per second. Each task ri may be executed at a volt-
age vi, vi 2 fV1; V2g, and correspondingly, at a speed xi,
xi 2 fs1; s2g. Tasks are not preemptable, i.e., once a task
starts executing, no other task can execute until it completes
execution. There is also no inserted idle time. This means
that the scheduling algorithm does not allow the processor
to be idle if there is a task that has been released but has not
completed execution.

It is well-known that power consumption in CMOS cir-
cuits has a quadratic dependence on the CPU voltage.
Therefore, the energy Ei consumed by task ri of length li

is Ei / v
2

i
� li. Thus, energy consumption of task ri varies

quadratically with its assigned processor voltage vi and lin-
early with its length li.

The low-energy scheduling problem can be shown to be
NP-complete. Nevertheless, it can be solved exactly for
moderate-sized instances using mixed-integer linear pro-
gramming (MILP).

3 Mixed-integer linear programming model

The optimization problem we address is to minimize the
total energy consumed by the set of n tasks by optimally de-
termining their start times t1; t2; : : : ; tn, their voltages and
corresponding execution speeds.

The following constraints need to be modeled: (i) CPU
speeds are limited to one of two values—s1 or s2, (ii) The
deadline for each task must be met, (iii) Tasks are non-
preemptable, and (iv) A task may start only after it has been
released.

We observed in Section 2 that the energy consumed by
task ri is proportional to v

2

i
li.

Hence, the objective function is Minimize
P

liv
2

i
.

The modeling of the constraints and their subsequent lin-
earization are omitted here due to space limitations.

The MILP model is too computationally-intensive to be
used for large task sets. However, it is helpful in providing a
lower bound on the amount of energy consumed by a given
task set. In our MILP formulation, a priori knowledge of
the release times has been inherently assumed. We observe
that energy can be minimized to a greater extent in the off-
line case than in the on-line one. This justifies use of MILP

as a comparison tool for providing lower bounds on energy
consumption.

4 The LEDF heuristic

Although MILP is a useful and optimal solution method
for small problem instances, it cannot be used for large test
cases. In order to solve large problem instances, we have
developed a heuristic algorithm to generate near-optimal so-
lutions in polynomial time.

The low-energy earliest deadline first heuristic, or sim-
ply LEDF, is an extension of the well-known earliest dead-
line first (EDF) algorithm. The operation of LEDF is as
follows:

LEDF maintains a list of all released tasks, called the
“ready list”. When tasks are released, the task with the near-
est deadline is chosen to be executed. A check is performed
to see if the task deadline can be met by executing it at the
lower voltage (speed). If the deadline can be met, LEDF
assigns the lower voltage to the task and the task begins ex-
ecution. During the task’s execution, other tasks may enter
the system. These tasks are assumed to be placed automat-
ically on the “ready list”. LEDF again selects the task with
the nearest deadline to be executed. As long as there are
tasks waiting to be executed, LEDF does not keep the pro-
cessor idle. This process is repeated until all the tasks have
been scheduled. Figure 1 gives the algorithm in pseudo-
code form.

Procedure LEDF()
begin
Repeat forever
f
Are tasks waiting to be scheduled in ready list?

yes
Sort deadlines in ascending order
Schedule task with earliest deadline
Check if deadline can be met at lower speed (voltage)
If deadline can be met, schedule task to execute at lower voltage (speed)
If deadline cannot be met, check if deadline can be met at higher speed (voltage)
If deadline can be met, schedule task to execute at higher voltage (speed)
If deadline cannot be met, task cannot be scheduled. Call exception handler!
no
do-nothing

g
end

Figure 1. The LEDF algorithm

Our algorithm has a computational complexity of
O(n logn). The worst-case scenario occurs when all n

tasks are released at time t = 0. This involves sorting n

tasks in the ready list and then selecting the task with the
earliest deadline for execution. Given that all n tasks have
already arrived and that they are already sorted by dead-
line, we no longer need to perform sorting on the task set.

Task Release ai Deadline di Length li li=300 li=400

(x 10
6) (x 10

6) (x 10
6)

t1 3 7 800 2.66 2.0
t2 9 21 750 2.5 1.875
t3 0 5 1600 5.33 4.0
t4 18 25 1000 3.33 2.5
t5 14 16 600 2.0 1.5
t6 7 10 1200 4.0 3.0
t7 20 27 1100 3.66 2.75
t8 14 20 1600 5.33 4.0
t9 11 14 500 5.0 3.75
t10 30 35 1400 4.66 3.5
t11 27.5 30 800 2.66 2.0
t12 40 42 600 2.0 1.5
t13 34 39 1600 5.33 4.0
t14 40 46 1200 4.0 3.0
t15 44 50 1400 4.66 3.5
t16 44 55 2000 6.66 5.0
t17 40 43 300 1.0 0.75

Table 1. A simple task set consisting of 17 tasks.

Scheduling a task for execution has O(1) complexity. This
results in a worst-case execution time of O(n log n).

We now present our experimental results. First we show
the results of the MILP simulations and LEDF for a task set
of seventeen tasks.

Our example task set is given in Table 1. It consists of
seventeen tasks r1 to r17. Each task has a release time, a
deadline and length. We assume the two processor speeds
to be 300 million instructions per second (MIPS) at 2.47 V
and 400 MIPS at 3.3 V.

��
��
��
��

���
���
���
���

�
�
�
�

���
���
���
���

��
��
��
��

���
���
���
���

�
�
�
�
�
�
�
�
���
���
���
���

������
������
������
������

�����
�����
�����
�����

0 10 20 30 40 50 55

Task at 3.3 V (400 MIPS)

Task at 2.47 V (300 MIPS)

r3 r1 r6 r2 r9 r5 r8 r4 r7 r11 r10 r13 r12r17 r14 r15 r16

Energy consumption: 167327 units

Figure 2. Schedule generated using MILP

���
���
���
���

�����
�����
�����
�����

���
���
���
���

���
���
���
���

��
��
��
��

����
����
����
����

�
�
�
�

����
����
����
����

������
������
������
������

����
����
����
����

0 10 20 30 40 50 55

Task at 3.3 V (400 MIPS)

Task at 2.47 V (300 MIPS)

r3 r1 r6 r2 r9 r5 r8 r4 r7 r11 r10 r13 r12r17 r14 r15 r16

Energy consumption: 169709.75 units

Figure 3. Schedule generated using LEDF

The execution times for the tasks at the two different
speeds are also shown. Figure 2 shows the schedule gen-
erated using MILP. The energy consumed by the schedule
generated through MILP is 167327 units (measured by the
sum of the v2

i
li values).

Figure 3 shows the corresponding LEDF schedule for the

13 14 15 16 17
1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

5

Number of tasks

E
ne

rg
y

co
ns

um
ed

LEDF
MILP

Figure 4. Comparison of schedules generated by
MILP and LEDF.

same task set. The energy consumed by this schedule is
169709.75 units. We observe that the energy consumed here
is marginally greater than that for the MILP schedule. Nev-
ertheless, our results show that our algorithm can generate
near-optimal schedules with an energy increase of around
1%.

We observe that the order in which tasks are executed re-
mains the same in both the MILP and LEDF schedules. The
increased energy consumption of LEDF arises due to the
fact that LEDF does not possess knowledge of the release
times a priori. Our MILP model, which does not have such
a restriction, executes tasks r12 and r17 at a higher speed
(voltage) even though both could have met their respec-
tive deadlines by executing at a lower speed (voltage). We
showed in Section 2 that energy consumed by a task is pro-
portional to its length. Since the length of task r15 is greater
than the lengths of both r12 and r17, we see that by execut-
ing r12 and r17 at a higher speed (voltage), we can execute
r15 at a lower speed (voltage) and thus reduce the effect of
the length of r15 on energy. This, in fact, does result in an
optimal schedule. This characteristic of the task set cannot
be utilized by LEDF, or any other on-line scheduling al-
gorithm, because no scheduling algorithm has prior knowl-
edge of release times. In order to evaluate the effective-
ness of LEDF, we generated energy-optimal schedules us-
ing MILP and the corresponding schedules using LEDF for
task sets containing upto seventeen tasks. The results, plot-
ted in Figure 4, show that LEDF produces optimal sched-
ules for upto fourteen tasks. Beyond that, it slowly starts to
diverge from the optimal schedule.

We also applied the LEDF algorithm to a real-time task

set consisting of twenty-four tasks. This task set was used
for the development of an application-specific integrated
circuit for an avionics application [10]. The processor
speeds were assumed to be 100 MIPS and 260 MIPS, with
corresponding voltages 1.2 V and 3.3 V respectively. The
energy consumed by this task set was 203803.55 units. If
all tasks are scheduled at the higher speed, the energy con-
sumed is as high as 360938 units, i.e. 77% higher. On the
other hand, if only the lower speed is used, as many as seven
tasks miss their deadlines.

Finally, we applied LEDF to a 39-task example. This
task set comes from an embedded signal processing appli-
cation for an anti-submarine warfare (ASW) system [1].
The task set runs on a Mercury PowerPC 6U VME board
with a 200 MHz 603e processor. We have assumed that
the processor is capable of operating at 100 MHz and that
the processor speeds are dynamically switchable. We have
also assumed that the CPU operates at 200 MHz at 3.3 V
and at 100 MHz at 1.65 V. Furthermore, in order to em-
phasize energy minimization, the deadlines we have used
are tighter than the actual deadlines for the actual task set.
For this example, LEDF generated a schedule that con-
sumed 323680.78 units of energy. For this task set, if only
the higher speed (voltage) is used, the energy consumed is
477482 units, i.e, 47:5% higher. However, if only the lower
speed is used, seventeen tasks miss their deadlines.

The MILP model took prohibitively large amounts of
time for scheduling task sets consisting of more than sev-
enteen tasks running on a dual-processor Sun Ultra-1 with
a 256 MB memory capacity. For an eighteen task data set,
MILP took over a day to generate the optimal solution. On
the other hand, LEDF took under a second to generate a
near-optimal solution for the thirty-nine task example.

References

[1] J. Anderson, private communication, March 2000.

[2] G. C. Buttazzo, Hard Real-time Computing Systems:
Predictable Scheduling Algorithms and Applications,
Kluwer Academic Publishers, Norwell, MA, 1997.

[3] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, Freeman and Co., New York, NY,
1979.

[4] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava,
“Synthesis techniques for low-power hard real-time
systems on variable-voltage processors”, Proc. Real-
time Systems Symposium, pp. 178–187, 1998.

[5] Intel Pentium III Processor Brief,
http://www.intel.com

[6] K. Jeffay, D. F. Stanat and C. U. Martel, “On non-
preemptive scheduling of periodic and sporadic tasks
with varying execution priority,” Proc. IEEE Real-
Time Systems Symposium, pp. 129–139, December
1991.

[7] E. L. Lawler and C. U. Martel, “Scheduling period-
ically occurring tasks on multiple processors”, Infor-
mation Processing Letters, vol. 12, no. 1, pp. 9–12,
1981.

[8] C. L. Liu and J. Layland, “Scheduling algorithms for
multiprogramming in a hard real-time environment”,
Journal of the ACM, vol. 20, pp. 46–61, 1973.

[9] J. R. Lorch and A. J. Smith, “Scheduling techniques
for reducing processor energy use in MacOS”, Wire-
less Networks,, vol. 3, pp. 311–324, 1997.

[10] J. H. Wensley, K. N. Levitt, M. W. Green, J. Goldberg
and P. G. Neumann, “ Design of a fault tolerant air-
borne digital computer. Volume 1: Architecture,” Fi-
nal Report, Stanford Research Institute, Menlo Park,
CA, October 1973.

[11] J. M. Rabaey and M. Pedram, Low Power Design
Methodologies, Kluwer Academic Publishers, Nor-
well, MA, 1996.

[12] M. Weiser, B. Welch, A. Demers and S. Shenker,
“Scheduling for reduced CPU energy,” Proc. Sympo-
sium on Operating System Design and Implementa-
tion, pp. 13–23, 1994.

[13] F. Yao, A. Demers and S. Shenker, “A scheduling
model for reduced CPU energy”, Proc. IEEE An-
nual Foundations of Computer Science, pp. 374–382,
1995.

